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Abstract 

 
Advances in deep learning over the last 

decade have led to a flurry of research in the 

application of deep artificial neural networks to 

robotic systems, with at least thirty papers published 

on the subject between 2014 and the present. This 

review discusses the applications, benefits, and 

limitations of deep learning vis-à-vis physical 

robotic systems, using contemporary research as 

exemplars. It is intended to communicate recent 

advances to the wider robotics community and 

inspire additional interest in and application of deep 

learning in robotics 

 

Deep learning allows robots to do better analysis 

and detection of in vulgar things through more 

detailed and complex data. 

 

Here are some examples of applications of deep 

learning: 

 
Robots use deep networks that are used to categorize 

drugs and process large amounts of cells and even to 

identify biomaterial from the blood. 

 

 

 

 

 Physics of particle 
 

Robots with deep learning systems are being 

used used to detect the particles like the Higs Boson 

by detecting the reactions and defining which 

particle is now there. 

 
How is deep learning used in robotics? 

 

There are lots of possible applications of 

deep learning concepts in Robotics.One of the most 

popular applications is Sentiment Analysis of 

Images being processed in real time.However, much 

of such endeavors are limited to researches and 

hobby stuff as performing deep learning algorithms 

on a scaled robotic platform (that is recording lots of 

abstract images and video content) is in itself a 

challenge. 

 

A big chunk of it can be credited to 

 Heavy processing power 

 Scaled Cost 

 Higher Processing time 

 Inefficient Image Processing Algorithms 

 

A big leap in the field of Artificial Intelligence 

is marked by efficient sentiment analysis. It 

generally involves semantic context mining and 

related semantic data mining from objects (movable 

or immovable), scenes or images and generating tags 

and metadata using supervised or unsupervised 

machine learning models. 
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Deep learning high level trajectory of deep 

learning with robotics  

 

Ultimately, the underlying philosophy that 

prevails in the deep learning community is that 

every part of a complex system can be made to 

“learn.” Thus, the real power of deep learning does 

not come from using just one of the structures 

described in the previous section as a component in 

a robotics system, but in connecting parts of all of 

these structures together to form a full system that 

learns throughout. This is where the “deep” in deep 

learning begins to make its impact – when each part 

of a system is capable of learning, the system as a 

whole can adapt in sophisticated ways. 

Neuroscientists are even starting to recognize that 

many of the patterns evolving within the deep 

learning community and throughout artificial 

intelligence are starting to mirror some of those that 

have previously evolved in the brain . Doya 

identified that supervised learning methods 

(Structures A and C) mirror the function of the 

cerebellum, unsupervised methods (Structure B) 

learn in a manner comparable to that of the cerebral 

cortex, and reinforcement learning is analogous 

with the basal ganglia . Thus, the current trajectory 

of advancement strongly suggests that control of 

robots is leading toward full cognitive architectures 

that divide coordination tasks in a manner 

increasingly analogous with the brain .  

 

 Deep learning in robotics  

 
The robotics community has identified 

numerous goal for robotics in the next 5 to 20 years. 

These include, but certainly are not limited to, 

human-like walking and running, teaching by 

demonstration, mobile navigation in pedestrian 

environments, collaborative automation, automated 

bin/shelf picking, automated combat recovery, and 

automated aircraft inspection and maintenance, and 

robotic disaster mitigation and recovery. 

 This paper identifies seven general 

challenges for robotics that are critical for few 

reaching these goals and for which DNN technology 

has high potential for impact: 

 

Challenge 1: Learning complex, high-

dimensional, and novel dynamics.  

 

Analytic derivation of complex dynamics 

requires human experts, is time consuming, and 

poses a trade-off between state dimensionality and 

tractability. Making such models robust to 

uncertainty is difficult, and full state information is 

often unknown. Systems that can quickly and 

autonomously adapt to novel dynamics are needed 

to solve problems such as grasping new objects, 

traveling over surfaces with unknown or uncertain 

properties, managing interactions between a new 

tool and/or environment, or adapting to degradation 

and/or failure of robot subsystems. Also needed are 

methods to accomplish this for systems that possess 

hundreds (or even thousands) of degrees of freedom, 

exhibit high levels of uncertainty, and for which only 

partial state information is available.  

 

Challenge 2: Learning control policies in dynamic 

environments.  

 

As with dynamics, control systems that 

accommodate high degrees of freedom for 

applications such as multi-arm mobile manipulators, 

anthropomorphic hands, and swarm robotics are 

needed. Such systems will be called upon to function 

reliably and safely in environments with high 

uncertainty and limited state information. 

 

Challenge 3: Advanced manipulation.  

 

Despite advances achieved over 3 decades of 

active research, robust and general solutions for 

tasks such as grasping deformable and/or complex 

geometries, using tools, and actuating systems in the 

environment (turn a valve handle, open a door, and 

so forth) remain elusive – especially in novel 

situations. This challenge includes kinematic, 

kinetic, and grasp planning inherent in tasks such as 

these.  

 

Challenge 4: Advanced object recognition.  

 

DNNs have already proven to be highly 

adept at recognizing and classifying objects . 

Advanced application examples include recognizing 

deformable objects and estimating their state and 

pose for grasping, semantic task and path 

specification (e.g., go around the table, to the car, 

and open the trunk), and recognizing the properties 

of objects and surfaces such as sharp objects that 

could pose a danger to human collaborators or 

wet/slippery floors. 
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Challenge 5: Interpreting and anticipating human 

actions.  
 

This challenge is critical if robots are to work 

with or amongst people in applications such as 

collaborative robotics for manufacturing, eldercare, 

autonomous vehicles operating on public 

thoroughfares, or navigating pedestrian 

environments. It will enable teaching by 

demonstration, which will in turn facilitate task 

specification by individuals without expertise in 

robotics or programming. This challenge may also 

be extended to perceiving human needs and 

anticipating when robotic intervention is 

appropriate.  

 

Challenge 6: Sensor fusion & dimensionality 

reduction.  

 

The proliferation of low-cost sensing 

technologies has been a boon for robotics, providing 

a plethora of potentially rich, high-dimensional, and 

multimodal data. This challenge refers to methods 

for constructing meaningful and useful 

representations of state from such data.  

 

 

 

Challenge 7: High-level task planning.  

 

Robots will need to reliably execute high-

level commands that fuse the previous six challenges 

to achieve a new level of utility, especially if they 

are to benefit the general public. For example, the 

command “get the milk” must autonomously 

generate the lower-level tasks of navigating to/from 

the refrigerator, opening/closing the door, 

identifying the proper container (milk containers 

may take many forms), and securely grasping the 

container. Loosely speaking, these challenges form 

a sort of “basis set” for the goals mentioned above. 

For example, human-like walking and running will 

rely heavily on 12 Challenges 1 (learning dynamics) 

and 2 (learning control policies), while teaching by 

demonstration will require advances in Challenges 4 

(object recognition), 5 (interpreting human action), 

and 6 (sensor fusion).  

Additional focus on applying Structures B, 

C, and D to robotics problems may very well 

catalyse significant advancement in many of the 

identified challenges. 

 

 Classifiers and discriminative models (Structure 

A) in robotics  

  

The role of Structure A in robotics 

  

Structure A involves using a deep learning 

model to approximate a function from sample input-

output pairs. This may be the most general-purpose 

deep learning structure, since there are many 

different functions in robotics that researchers and 

practitioners may want to approximate from sample 

observations. Some examples include mapping from 

actions to corresponding changes in state, mapping 

from changes in state to the actions that would cause 

it, or mapping from forces to motions. Whereas in 

some cases physical equations for these functions 

may already be known, there are many other cases 

where the environment is just too complex for these 

equations to yield 14 acceptable accuracy. In such 

situations, learning to approximate the function from 

sample observations may yield significantly better 

accuracy. The functions that are approximated need 

not be continuous. Function approximating models 

also excel at classification tasks, such as determining 

what type of object lies before the robot, which 

grasping approach or general planning strategy is 

best suited for current conditions, or what is the state 

of a certain complex object with which the robot is 

interacting. The next section reviews some of the 

many applications for classifiers, regression models, 

and discriminative models that have appeared in the 

recent literature with robotics. 

 

Generative and Unsupervised models (Structure 

B) in robotics  

 

The role of Structure B in robotics 

  

One of the characteristic capabilities that 

make humans so proficient at operating in the real 

world is their ability to understand what they 

perceive. A similar capability is offered in 

autoencoders, a type of deep learning model that 

both encodes observations into an internal 

representation, then decodes it back to the original 

observation. These models digest high-dimensional 

data and produce compact, low-dimensional internal 

representations that succinctly describe the meaning 

in the original observations . Thus, auto-encoders are 

used primarily in cases where high-dimensional 

observations are available, but the user wants a low-

dimensional representation of state. Generative 

models are closely related. They utilize only the 
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decoding portion of an autoencoder, and are useful 

for predicting observations. Inference methods may 

be used with generative models to estimate internal 

representations of state without requiring an encoder 

to be trained at all. In many ways, generative models 

may be considered to be the opposite of classifiers, 

or discriminative models, because they map from a 

succinct representation to a full high-dimensional set 

of values similar to those that might typically be 

observed. 

 

 

Recurrent models (Structure C) in robotics  

 

 The role of Structure C in robotics  

 

Recurrent models excel at learning to 

anticipate complex dynamics. The recurrent 

connections in such models give them a form of 

“memory” that they can use to remember the current 

state. This knowledge of state enables them to model 

the effects of time in a changing environment. 

 

 Policy learning models (Structure D) in robotics  

       

The role of Structure D in robotics  

 

Learning a near optimal (or at least a 

reasonably acceptable) control policy is often the 

primary objective in combining machine learning 

with robotics. The canonical model for using deep 

neural networks for learning a control policy is deep 

Q-learning . It uses a DNN to model a table of Q-

values, which are trained to converge to a 

representation of the values for performing each 

possible action in any state. Although Structure D is 

quite similar to Structure A in terms of the model 

itself, they are trained in significantly different ways. 

Instead of minimizing prediction error against a 

training set of samples, deep Q-networks seek to 

maximize long-term reward. This is done through 

seeking a balance between exploration and 

exploitation that ultimately leads to an effective 

policy model. Ultimately, reinforcement learning 

models are useful for learning to operate dynamic 

systems from partial state information, and 

controllers based on deep reinforcement learning 

can be very computationally efficient at runtime 

[125]. They automatically infer priorities based on 

rewards that are obtained during training. In theory, 

they provide a complete control policy learning 

system, but they do suffer from extremely slow 

training times. Consequently, many of the works in 

the next section combine them with other 

approaches in order to seek greater levels of control 

accuracy and training speed 

  
Conclusion  

 
Deep learning has shown promise in 

significant sensing, cognition, and action problems, 

and even the potential to combine these normally 

separate functions into a single system. DNNs can 

operate on raw sensor data and deduce key features 

in that data without human assistance, potentially 

greatly reducing up-front engineering time. They are 

also adept at fusing high-dimensional, multimodal 

data. Improvement with experience has been 

demonstrated, facilitating adaptation in the dynamic, 

unstructured environments in which robots operate. 

Some remaining barriers to the adoption of deep 

learning in robotics include the necessity for large 

training data and long training times. Generating 

training data on physical systems can be relatively 

time consuming and expensive. One promising trend 

is crowdsourcing training data via cloud robotics . It 

is not even necessary that this data be from other 

robots, as shown by Yang’s use of general-purpose 

cooking videos for object and grasp recognition . 

Regarding training time, local parallel processing  

and increases in raw processing speed have led to 

significant improvements. Distributed computing 

offers the potential to direct more computing 

resources to a given problem [88] but can be limited 

by communication speeds . There may also be 

algorithmic ways of making the training process 

more efficient yet to be discovered. 
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